Treatment with apolipoprotein a1 protects mice against doxorubicin-induced cardiotoxicity in a scavenger receptor class b, type I-dependent manner

17Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Treatment with apolipoprotein A1 protects mice against doxorubicin-induced cardiotoxicity in a scavenger receptor class B, type I-dependent manner. Am J Physiol Heart Circ Physiol 316: H1447–H1457, 2019. First published April 19, 2019; doi:10.1152/ajpheart.00432. 2018.—Doxorubicin, an agent used to treat a variety of cancers, is cardiotoxic by triggering cardiomyocyte apoptosis. We previously showed that treating cultured cardiomyocytes with human high-density lipoprotein in vitro or transgenic overexpression of human apolipoprotein A1, its main structural protein, protects against doxorubicin-induced cardiomyocyte apoptosis in a manner dependent on the scavenger receptor class B type I [Durham KK, Chathely KM, Mak KC, Momen A, Thomas CT, Zhao YY, MacDonald ME, Curtis JM, Husain M, Trigatti BL. HDL protects against doxorubicin-induced cardiotoxicity in a scavenger receptor class B type 1-, phosphatidylinositol 3-kinase-, and Akt-dependent manner. Am J Physiol Heart Circ Physiol 314: H31–H44, 2018]. This was due to high-density lipoprotein-induced activation of Akt signaling in cardiomyocytes. We now demonstrate that mice lacking the scavenger receptor class B, type I exhibit increased sensitivity to doxorubicin-induced cardiomyocyte apoptosis in vivo. Cardiomyocytes expressing scavenger receptor class B, type I are protected from doxorubicin-induced apoptosis by preincubation with high-density lipoprotein isolated from wild-type mice, whereas high-density lipoprotein from scavenger receptor class B, type 1 knockout mice is less effective. Cardiomyocytes from scavenger receptor class B, type I knockout mice, however, are not protected by high-density lipoprotein in vitro, and hearts from knockout mice are more sensitive to doxorubicin in vivo. Pharmacological administration of purified apolipoprotein A1 dramatically protected wild-type mice from doxorubicin-induced cardiotoxicity and left ventricular dysfunction, whereas this protection was lost in scavenger receptor class B, type I-deficient mice. This demonstrates, at least in mice, that high-density lipoprotein therapy can confer protection against doxorubicin-induced cardiomyocyte apoptosis in a manner mediated by the scavenger receptor class B, type I. NEW & NOTEWORTHY We show that scavenger receptor class B, type I (SR-B1) mediates HDL-dependent protection against doxorubicin-induced cardiomyocyte apoptosis and that this is a property of SR-B1 in cardiomyocytes in vitro and in hearts in vivo. We also demonstrate that pharmacological treatment with apolipoprotein A1, the major HDL structural protein, protects mice against doxorubicin-induced cardiomyocyte apoptosis and left ventricular dysfunction in an SR-B1-dependent manner. This suggests that HDL-targeted pharmacological therapy may hold promise for protecting against the deleterious, cardiotoxic side effects of this commonly used chemo-therapeutic drug.

Cite

CITATION STYLE

APA

Durham, K. K., Kluck, G., Mak, K. C., Deng, Y. D., & Trigatti, B. L. (2019). Treatment with apolipoprotein a1 protects mice against doxorubicin-induced cardiotoxicity in a scavenger receptor class b, type I-dependent manner. American Journal of Physiology - Heart and Circulatory Physiology, 316(6), H1447–H1457. https://doi.org/10.1152/ajpheart.00432.2018

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free