Dissolved organic carbon transformations and microbial community response to variations in recharge waters in a shallow carbonate aquifer

23Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In carbonate aquifers, dissolved organic carbon from the surface drives heterotrophic metabolism, generating CO2 in the subsurface. Although this has been a proposed mechanism for enhanced dissolution at the water table, respiration rates and their controlling factors have not been widely evaluated. This study investigates the composition and concentration of dissolved organic carbon (DOC) reaching the water table from different recharge pathways on a subtropical carbonate island using a combination of DOC concentration measurements, fluorescence and absorption characterisation. In addition, direct measurements of the microbial response to the differing water types were made. Interactions of rainfall with the vegetation, via throughfall and stemflow, increase the concentration of DOC. The highest DOC concentrations are associated with stemflow, overland recharge and dissolution hole waters which interact with bark lignin and exhibit strong terrestrial-derived characteristics. The groundwater samples exhibit the lowest concentrations of DOC and are comprised of refractory humic-like organic matter. The heterotrophic response seems to be controlled by the concentration of DOC in the sample. The terrestrially sourced humic-like matter in the stemflow and dissolution hole samples was highly labile, thus increasing the amount of biologically produced CO2 to drive dissolution. Based on the calculated respiration rates, microbial activity could enhance carbonate dissolution, increasing porosity generation by a maximum of 1 % kyr−1 at the top of the freshwater lens.

Cite

CITATION STYLE

APA

Cooper, K. J., Whitaker, F. F., Anesio, A. M., Naish, M., Reynolds, D. M., & Evans, E. L. (2016). Dissolved organic carbon transformations and microbial community response to variations in recharge waters in a shallow carbonate aquifer. Biogeochemistry, 129(1–2), 215–234. https://doi.org/10.1007/s10533-016-0226-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free