Diffusion Tensor Imaging with Deterministic Error Bounds

1Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Errors in the data and the forward operator of an inverse problem can be handily modelled using partial order in Banach lattices. We present some existing results of the theory of regularisation in this novel framework, where errors are represented as bounds by means of the appropriate partial order. We apply the theory to diffusion tensor imaging, where correct noise modelling is challenging: it involves the Rician distribution and the non-linear Stejskal–Tanner equation. Linearisation of the latter in the statistical framework would complicate the noise model even further. We avoid this using the error bounds approach, which preserves simple error structure under monotone transformations.

Cite

CITATION STYLE

APA

Gorokh, A., Korolev, Y., & Valkonen, T. (2016). Diffusion Tensor Imaging with Deterministic Error Bounds. Journal of Mathematical Imaging and Vision, 56(1), 137–157. https://doi.org/10.1007/s10851-016-0639-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free