Low-Level Video Features as Predictors of Consumer Engagement in Multimedia Advertisement

1Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

The article addresses modelling of consumer engagement in video advertising based on automatically derived low-level video features. The focus is on a young consumer group (18–24 years old) that uses ad-supported online streaming more than any other group. The reference ground truth for consumer engagement was collected in an online crowdsourcing study (N = 150 participants) using the User Engagement Scale-Short Form (UES-SF). Several aspects of consumer engagement were modeled: focused attention, aesthetic appeal, perceived usability, and reward. The contribution of low-level video features was assessed using both the linear and nonlinear models. The best predictions were obtained for the UES-SF dimension Aesthetic Appeal ((Formula presented.)) using a nonlinear model. Overall, the results show that several video features are statistically significant in predicting consumer engagement with an ad. We have identified linear relations with Lighting Key and quadratic relations with Color Variance and Motion features ((Formula presented.)). However, their explained variance is relatively low (up to 25%).

Cite

CITATION STYLE

APA

Aslan Oğuz, E., Košir, A., Strle, G., & Burnik, U. (2023). Low-Level Video Features as Predictors of Consumer Engagement in Multimedia Advertisement. Applied Sciences (Switzerland), 13(4). https://doi.org/10.3390/app13042426

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free