The probiotic properties of commensal bacteria including lactobacilli and bifidobacteria are likely to be determined at least in part by their effects on dendritic cells. Like traditional immune stimulants such as lipopolysaccharides (LPS), probiotic bacteria promote maturation of cultured human dendritic cells (DC) by inducing elevated expression of MHC-II and co-stimulatory molecules. Different effects have been reported on cytokine induction, especially of major regulatory cytokines such as TNF-α, IL-12 and IL-10. Yet, these previous analyses have failed to reveal consistent differences between such effects of probiotics on the one hand, and of LPS on the other. Selective response markers for probiotics, however, would be important for our understanding of their biological properties and for a rational selection of strains for in vivo studies. In this study, we compared in detail both early and late effects on cultured human DC of 4 different probiotics with those of LPS. At the early stages of stimulation, all stimuli induced qualitatively very similar responses in DC at the level of surface markers and secretion of cytokines and chemokines. A lower immune stimulatory effect was observed by Bifidobacterium animalis BB-12 as compared to lactobacilli. Late responses, on the other hand, tended to diverge. Microarray transcript profiling for 268 cytokines, chemokines, growth factors and their receptors after 2 days of culture revealed various transcripts to be selectively induced by certain probiotics but not LPS. Our data indicate that late rather than early DC responses may be helpful to clarify the divergent biological effects of probiotics on human innate immune responses.
CITATION STYLE
Verbeek, R., Bsibsi, M., Plomp, A., van Neerven, R. J. J., Te Biesebeke, R., & Van Noort, J. M. (2010). Late rather than early responses of human dendritic cells highlight selective induction of cytokines, chemokines and growth factors by probiotic bacteria. Beneficial Microbes, 1(2), 109–119. https://doi.org/10.3920/BM2009.0026
Mendeley helps you to discover research relevant for your work.