A novel intermittent microwave-assisted carbonization method was developed to prepare bio-char (BWSC) from Durian wood sawdust (BWS). The BWS was further activated using a base-catalytic approach to produce a graphitic form of bio-carbon (BWSAC). A three factor, two-level central composite (CCD) experimental design was used to maximize Pb(II) ion removal from aqueous solution using BWSAC. Three independent variables (initial pH of solution (pH0) ranging from 2 to 8, initial metal ion concentration of Pb(II) cations (C0) ranging from 50 to 100 mg/L, and contact time (Ct) ranging from 10 to 300 min) were consecutively coded as x1, x2, and x3 at three levels (-1, 0 and 1) of the design matrix. The experimental conditions in terms of actual factors were determined to be x1 (pH0) = 5.86, x2 (C0) = 57.77 mg/L, and x3 (temperature) = 53.85 °C, and the resultant Pb(II) ion removal efficiency (y1) obtained was 92.73%, with a model desirability of 0.974. The change in physiochemical properties after carbonization as well as activation was observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer, Emmett and Teller surface area analysis (BET), Thermogravimetric analysis (TGA), Ultimate analysis, and Fourier transform infrared spectroscopy (FTIR).
CITATION STYLE
Chowdhury, Z. Z., Yehye, W. A., Julkapli, N. M., Al Saadi, M. A. H., & Atieh, M. A. (2016). Application of graphitic bio-carbon using two-level factorial design for microwave-assisted carbonization. BioResources, 11(2), 3637–3659. https://doi.org/10.15376/biores.11.2.3637-3659
Mendeley helps you to discover research relevant for your work.