Production of green biofuel by using a goat manure supported Ni-Al hydrotalcite catalysed deoxygenation process

7Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

Abstract

The high oxygen content in natural biomass resources, such as vegetable oil or biomass-pyrolysed bio oil, is the main constraint in their implementation as a full-scale biofuel for the automotive industry. In the present study, renewable fuel with petrodiesel-like properties was produced via catalytic deoxygenation of oleic acid in the absence of hydrogen (H 2 ). The deoxygenation pathway of oleic acid to bio-hydrocarbon involves decarboxylation/decarbonylation of the oxygen content from the fatty acid structure in the form of carbon dioxide (CO 2 )/carbon monoxide (CO), with the presence of a goat manure supported Ni-Al hydrotalcite (Gm/Ni-Al) catalyst. Goat manure is an abundant bio-waste, containing a high mineral content, urea as well as cellulosic fiber of plants, which is potentially converted into activated carbon. Synthesis of Gm/Ni-Al was carried out by incorporation of pre-activated goat manure (GmA) during co-precipitation of Ni-Al catalyst with 1 : 3, 1 : 1 and 3 : 1 ratios. The physico-chemical properties of the catalysts were characterized by X-ray diffractometry (XRD), Brunauer-Emmet-Teller (BET) surface area, field emission surface electron microscopy (FESEM) and temperature program desorption ammonia (TPD-NH 3 ) analysers. The catalytic deoxygenation reaction was performed in a batch reactor and the product obtained was characterized by using gas chromatography-mass spectroscopy (GCMS) for compound composition identification as well as gas chromatography-flame ionisation detector (GC-FID) for yield and selectivity determination. The optimization and evaluation were executed using response surface methodology (RSM) in conjunction with central composite design (CCD) with 5-level-3-factors. From the RSM reaction model, it was found that the Gm/Ni-Al 1 : 1 catalysed deoxygenation reaction gives the optimum product yield of 97.9% of hydrocarbon in the range of C 8 -C 20 , with diesel selectivity (C 17 : heptadecane and heptadecene compounds) of 63.7% at the optimal reaction conditions of: (1) reaction temperature: 327.14 °C, (2) reaction time: 1 h, and (3) catalyst amount: 5 wt%.

Cite

CITATION STYLE

APA

Zdainal Abidin, S. N., Lee, H. V., Juan, J. C., Rahman, N. A., & Taufiq-Yap, Y. H. (2019). Production of green biofuel by using a goat manure supported Ni-Al hydrotalcite catalysed deoxygenation process. RSC Advances, 9(3), 1642–1652. https://doi.org/10.1039/C8RA07818A

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free