Web 2.0 enables a two-way interaction between servers and clients. GPS receivers become available to more citizens and are commonly found in vehicles and smart phones, enabling individuals to record and share their trajectory data on the Internet and edit them online. OpenStreetMap (OSM) makes it possible for citizens to contribute to the acquisition of geographic information. This paper studies the use of OSM data to find newly mapped or built roads that do not exist in a reference road map and create its updated version. For this purpose, we propose a progressive buffering method for determining an optimal buffer radius to detect the new roads in the OSM data. In the next step, the detected new roads are merged into the reference road maps geometrically, topologically, and semantically. Experiments with OSM data and reference road maps over an area of 8494 km2 in the city of Wuhan, China and five of its 5 km × 5 km areas are conducted to demonstrate the feasibility and effectiveness of the method. It is shown that the OSM data can add 11.96% or a total of 2008.6 km of new roads to the reference road maps with an average precision of 96.49% and an average recall of 97.63%.
CITATION STYLE
Liu, C., Xiong, L., Hu, X., & Shan, J. (2015). A progressive buffering method for road map update using OpenStreetMap data. ISPRS International Journal of Geo-Information, 4(3), 1246–1264. https://doi.org/10.3390/ijgi4031246
Mendeley helps you to discover research relevant for your work.