Galaxy clusters are known to host a variety of extended radio sources: Tailed radio galaxies whose shape is modelled by the interaction with the intra-cluster medium (ICM); radio bubbles filling cavities in the ICM distribution and rising buoyantly through the thermal gas; diffuse giant radio sources ("halos" and "relics") revealing the presence of relativistic electrons and magnetic fields in the intra-cluster volume. It is currently the subject of an active debate how the non-thermal components that we observe at radio wavelengths affect the physical properties of the ICM and depend on the dynamical state of galaxy clusters. In this work we start our SKA1 feasibility study of the "radio cluster zoo" through simulations of a typical radio-loud cluster, hosting several bright tailed radio galaxies and a diffuse radio halo. Realistic simulations of SKA1 observations are obtained through the MeqTrees software. A new deconvolution algorithm, based on sparse representations and optimised for the detection of faint diffuse astronomical sources, is tested and compared to the classical CLEAN method.
CITATION STYLE
Ferrari, C., Dabbech, A., Smirnov, O., Makhathini, S., Kenyon, J. S., Murgia, M., … Colafrancesco, S. (2014). Non-thermal emission from galaxy clusters: Feasibility study with the SKA. In Proceedings of Science (Vol. 9-13-June-2014). Proceedings of Science (PoS). https://doi.org/10.22323/1.215.0075
Mendeley helps you to discover research relevant for your work.