Modified Coprecipitation Synthesis of Nickel-Rich NMC (Li1.0Ni0.6Mn0.2Co0.2O2) for Lithium-Ion Batteries: A Simple, Cost-Effective, Environmentally Friendly Method

3Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Lithium-ion batteries lay the foundation for satisfying the fast-growing demand of portable electronics and electric vehicles. However, due to the complexity of material syntheses, high fabrication temperature condition, and toxic gas emission, high volume manufacturing of lithium-ion batteries is still challenging. Here, we propose a modified coprecipitation method to synthesize Li1.0Ni0.6Mn0.2Co0.2O2 (NMC622-MCP) as a cathode material in a simple, cost-effective, and environmentally friendly approach. We demonstrate that the proposed method can be operated in a lower temperature environment, with respect to the requirement of conventional synthesis methods. Furthermore, only CO2 gas is emitted during synthesis. We also employed first-principles simulations to evaluate the crystallinity of the synthesized materials via X-ray diffractometer patterns. During charge/discharge processes, the obtained cathode materials induce outstanding electrochemical performance with a maximum specific capacity of up to 206.9 mAh g-1 at 0.05 C and a retention capacity of 83.22% after 100 cycles. Thus, the simple, cost-effective, environmentally friendly, and highly electrochemical performance of the newly acquired material envisages the modified coprecipitation method as a promising tool to manufacture cathode materials for lithium-ion batteries.

Cite

CITATION STYLE

APA

Le Thi, T., Phan Van, T., Nguyen Van, B., To Van, N., Nguyen Van, T., Doan, T. P., … Dang, M. T. (2023). Modified Coprecipitation Synthesis of Nickel-Rich NMC (Li1.0Ni0.6Mn0.2Co0.2O2) for Lithium-Ion Batteries: A Simple, Cost-Effective, Environmentally Friendly Method. ACS Omega, 8(48), 45414–45427. https://doi.org/10.1021/acsomega.3c04717

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free