Bundle extreme learning machine for power quality analysis in transmission networks

8Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

This paper presents a novel method for online power quality data analysis in transmission networks using a machine learning-based classifier. The proposed classifier has a bundle structure based on the enhanced version of the Extreme Learning Machine (ELM). Due to its fast response and easy-to-build architecture, the ELM is an appropriate machine learning model for power quality analysis. The sparse Bayesian ELM and weighted ELM have been embedded into the proposed bundle learning machine. The case study includes real field signals obtained from the Turkish electricity transmission system. Most actual events like voltage sag, voltage swell, interruption, and harmonics have been detected using the proposed algorithm. For validation purposes, the ELM algorithm is compared with state-of-the-art methods such as artificial neural network and least squares support vector machine.

Cite

CITATION STYLE

APA

Ucar, F., Cordova, J., Alcin, O. F., Dandil, B., Ata, F., & Arghandeh, R. (2019). Bundle extreme learning machine for power quality analysis in transmission networks. Energies, 12(8). https://doi.org/10.3390/en12081449

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free