The nuclear hormone receptor PPARγ as a therapeutic target in major diseases

93Citations
Citations of this article
61Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The peroxisome proliferator-activated receptor γ (PPARγ) belongs to the nuclear hormone receptor superfamily and regulates gene expression upon heterodimerization with the retinoid X receptor by ligating to peroxisome proliferator response elements (PPREs) in the promoter region of target genes. Originally, PPARγ was identified as being essential for glucose metabolism. Thus, synthetic PPARγ agonists, the thiazolidinediones (TZDs), are used in type 2 diabetes therapy as insulin sensitizers. More recent evidence implied an important role for the nuclear hormone receptor PPARγ in controlling various diseases based on its anti-inflammatory, cell cycle arresting, and proapoptotic properties. In this regard, expression of PPARγ is not restricted to adipocytes, but is also found in immune cells, such as B and T lymphocytes, monocytes, macrophages, dendritic cells, and granulocytes. The expression of PPARγ in lymphoid organs and its modulation of macrophage inflammatory responses, lymphocyte proliferation, cytokine production, and apoptosis underscore its immune regulating functions. Moreover, PPARγ expression is found in tumor cells, where its activation facilitates antitumorigenic actions. This review provides an overview about the role of PPARγ as a possible therapeutic target approaching major, severe diseases, such as sepsis, cancer, and atherosclerosis. ©2010 with author. Published by TheScientificWorld.

Cite

CITATION STYLE

APA

Schmidt, M. V., Brüne, B., & Von Knethen, A. (2010, November 4). The nuclear hormone receptor PPARγ as a therapeutic target in major diseases. TheScientificWorldJournal. https://doi.org/10.1100/tsw.2010.213

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free