The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: A post-mortem study

201Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this study the cross-sectional area (in n = 14 female controls, 15 male controls, 11 female patients with schizophrenia, 15 male patients with schizophrenia) and fibre composition (in n = 11 female controls, 10 male controls, 10 female patients with schizophrenia, 10 male patients with schizophrenia) of the corpus callosum in post-mortem control and schizophrenic brains was examined. A gender x diagnosis interaction (P = 0.005) was seen in the density of axons in all regions of the corpus callosum except the posterior midbody and splenium. Amongst controls, females had greater density than males; in patients with schizophrenia this difference was reversed. A reduction in the total number of fibres in all regions of the corpus callosum except the rostrum was observed in female schizophrenic patients (P = 0.006; when controlling for brain weight, P = 0.053). A trend towards a reduced cross-sectional area of the corpus callosum was seen in schizophrenia (P = 0.098); however, this is likely to be no more than a reflection of an overall reduction in brain size. With age, all subregions of the corpus callosum except the rostrum showed a significant reduction in cross-sectional area (P = 0.018) and total fibre number (P = 0.002). These findings suggest that in schizophrenia there is a subtle and gender-dependent alteration in the forebrain commissures that may relate to the deviations in asymmetry seen in other studies, but the precise anatomical explanation remains obscure.

Cite

CITATION STYLE

APA

Highley, J. R., Esiri, M. M., McDonald, B., Cortina-Borja, M., Herron, B. M., & Crow, T. J. (1999). The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: A post-mortem study. Brain, 122(1), 99–110. https://doi.org/10.1093/brain/122.1.99

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free