In this paper, the concept of SDN (Software Defined Networking) is extended to be applied to wireless networks. Traditionally, in a wired SDN environment, the OpenFlow protocol is the communication protocol used to configure the flow table of forwarding elements (i.e., switches and Access Points). However, although in IEEE 802.11 networks there is no concept of forwarding, the SDN paradigm could also be applied to set up the wireless network dynamically, in order to improve the performance. In this case, not only the network elements, that is the Access Points, but also the mobile elements should configure their link and physical layers parameters following the guidelines of a centralized SDN controller. In particular, we propose a mechanism called DEDCA (Dynamic Enhanced Distributed Channel Access) to manage the channel access in wireless networks, and a framework that enables its implementation in 802.11-based wireless networks using SDN technology. The key aspect of this alternative solution is the control over the contention window size of the wireless terminals. Thus, an adequate response to dynamic and short-term Quality of Service (QoS) requirements can be offered to services running on these networks. DEDCA mechanism relies upon the use of a scalar parameter called gain. The mathematical model which has allowed us to obtain this parameter is presented and evaluated in this paper. Finally, the usefulness of the proposed solutions have been evaluated by means of their implementation in an example case.
CITATION STYLE
Manzanares-Lopez, P., Malgosa-Sanahuja, J., & Muñoz-Gea, J. P. (2018). A software-defined networking framework to provide dynamic qos management in ieee 802.11 networks. Sensors (Switzerland), 18(7). https://doi.org/10.3390/s18072247
Mendeley helps you to discover research relevant for your work.