Flexural Properties of Multi-Tow Structures Constructed from Glass/Polypropylene Tape under Various Manufacturing Conditions

1Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this study, a multi-tow structure that can provide load-bearing functionality was fabricated through a proposed consolidation process proposed using polypropylene-impregnated continuous-glass-fiber composite tape (glass/PP tape). The flexural properties of the multi-tow structure were analyzed to evaluate the influence of the processing temperature, processing speed, number of glass/PP tapes, and glass fiber content of the glass/PP tapes. The proposed process for constructing the multi-tow structure can generate straight, curved, and looped three-dimensional structures by using a multi-joint robot and instantaneous consolidation of glass/PP tapes. As the number of glass/PP tapes increased, the resin-rich area increased and the void volume fraction in the multi-tow structure increased from 2 to 5 vol%, while the flexural strength decreased. However, when the number of glass/PP tapes and processing temperature were adjusted appropriately, the flexural strength of the multi-tow structure that can be constructed at speeds 30 times faster than those of conventional pultrusion process was relatively superior. The results of a finite element analysis, confirmed that the inclusion of the proposed multi-tow structure in a bumper beam was effective in reducing deformation and absorbing the impact energy due to external loads.

Cite

CITATION STYLE

APA

Lee, J. W., Kim, W. S., & Kim, C. G. (2022). Flexural Properties of Multi-Tow Structures Constructed from Glass/Polypropylene Tape under Various Manufacturing Conditions. Fibers and Polymers, 23(7), 1965–1974. https://doi.org/10.1007/s12221-022-4878-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free