AI4Boundaries: an open AI-ready dataset to map field boundaries with Sentinel-2 and aerial photography

8Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Field boundaries are at the core of many agricultural applications and are a key enabler for the operational monitoring of agricultural production to support food security. Recent scientific progress in deep learning methods has highlighted the capacity to extract field boundaries from satellite and aerial images with a clear improvement from object-based image analysis (e.g. multiresolution segmentation) or conventional filters (e.g. Sobel filters). However, these methods need labels to be trained on. So far, no standard data set exists to easily and robustly benchmark models and progress the state of the art. The absence of such benchmark data further impedes proper comparison against existing methods. Besides, there is no consensus on which evaluation metrics should be reported (both at the pixel and field levels). As a result, it is currently impossible to compare and benchmark new and existing methods. To fill these gaps, we introduce AI4Boundaries, a data set of images and labels readily usable to train and compare models on field boundary detection. AI4Boundaries includes two specific data sets: (i) a 10m Sentinel-2 monthly composites for large-scale analyses in retrospect and (ii) a 1m orthophoto data set for regional-scale analyses, such as the automatic extraction of Geospatial Aid Application (GSAA). All labels have been sourced from GSAA data that have been made openly available (Austria, Catalonia, France, Luxembourg, the Netherlands, Slovenia, and Sweden) for 2019, representing 14.8M parcels covering 376Kkm2. Data were selected following a stratified random sampling drawn based on two landscape fragmentation metrics, the perimeter/area ratio and the area covered by parcels, thus considering the diversity of the agricultural landscapes. The resulting "AI4Boundaries"dataset consists of 7831 samples of 256 by 256 pixels for the 10m Sentinel-2 dataset and of 512 by 512 pixels for the 1m aerial orthophoto. Both datasets are provided with the corresponding vector ground-truth parcel delineation (2.5M parcels covering 47105km2), and with a raster version already pre-processed and ready to use. Besides providing this open dataset to foster computer vision developments of parcel delineation methods, we discuss the perspectives and limitations of the dataset for various types of applications in the agriculture domain and consider possible further improvements. The data are available on the JRC Open Data Catalogue: http://data.europa.eu/89h/0e79ce5d-e4c8-4721-8773-59a4acf2c9c9 .

Cite

CITATION STYLE

APA

D’andrimont, R., Claverie, M., Kempeneers, P., Muraro, D., Yordanov, M., Peressutti, D., … Waldner, F. (2023). AI4Boundaries: an open AI-ready dataset to map field boundaries with Sentinel-2 and aerial photography. Earth System Science Data, 15(1), 317–329. https://doi.org/10.5194/essd-15-317-2023

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free