The influences of the M2R-GIRK4-RGS6 dependent parasympathetic pathway on electrophysiological properties of the mouse heart

3Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

A large body of work has established the prominent roles of the atrial M2R-IKACh signaling pathway, and the negative regulatory protein RGS6, in modulating critical aspects of parasympathetic influence on cardiac function, including pace-making, heart rate (HR) variability (HRV), and atrial arrhythmogenesis. Despite increasing evidence of its innervation of the ventricles, and the expression of M2R, IKACh channel subunits, and RGS6 in ventricle, the effects of parasympathetic modulation on ventricular electrophysiology are less clear. The main objective of our study was to investigate the contribution of M2R-IKACh signaling pathway elements in murine ventricular electrophysiology, using in-vivo ECG measurements, isolated whole-heart optical mapping and constitutive knockout mice lacking IKACh (Girk4–/–) or RGS6 (Rgs6-/-). Consistent with previous findings, mice lacking GIRK4 exhibited diminished HR and HRV responses to the cholinergic agonist carbachol (CCh), and resistance to CCh-induced arrhythmic episodes. In line with its role as a negative regulator of atrial M2RIKACh signaling, loss of RGS6 correlated with a mild resting bradycardia, enhanced HR and HRV responses to CCh, and increased propensity for arrhythmic episodes. Interestingly, ventricles from mice lacking GIRK4 or RGS6 both exhibited increased action potential duration (APD) at baseline, and APD was prolonged by CCh across all genotypes. Similarly, CCh significantly increased the slope of APD restitution in all genotypes. There was no impact of genotype or CCh on either conduction velocity or heterogeneity. Our data suggests that altered parasympathetic signaling through the M2R-IKACh pathway can affect ventricular electrophysiological properties distinct from its influence on atrial physiology.

Cite

CITATION STYLE

APA

Kulkarni, K., Xie, X., De Velasco, E. M. F., Anderson, A., Martemyanov, K. A., Wickman, K., & Tolkacheva, E. G. (2018). The influences of the M2R-GIRK4-RGS6 dependent parasympathetic pathway on electrophysiological properties of the mouse heart. PLoS ONE, 13(4). https://doi.org/10.1371/journal.pone.0193798

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free