Electronic Health Record (EHR) coding is the task of assigning one or more International Classification of Diseases (ICD) codes to every EHR. Most previous work either ignores the hierarchical nature of the ICD codes or only focuses on parent-child relations. Moreover, existing EHR coding methods predict ICD codes from the leaf level with the greatest ICD number and the most fine-grained categories, which makes it difficult for models to make correct decisions. In order to address these problems, we model EHR coding as a path generation task. For this approach, we need to address two main challenges: (1) How to model relations between EHR and ICD codes, and relations between ICD codes? (2) How to evaluate the quality of generated ICD paths in order to obtain a signal that can be used to supervise the learning? We propose a coarse-to-fine ICD path generation framework, named Reinforcement Path Generation Network (RPGNet), that implements EHR coding with a Path Generator (PG) and a Path Discriminator (PD). We address challenge (1) by introducing a Path Message Passing (PMP) module in the PG to encode three types of relation: between EHRs and ICD codes, between parent-child ICD codes, and between sibling ICD codes. To address challgenge (2), we propose a PD component that estimates the reward for each ICD code in a generated path. RPGNet is trained with Reinforcement Learning (RL) in an adversarial manner. Experiments on the MIMIC-III benchmark dataset show that RPGNet significantly outperforms state-of-the-art methods in terms of micro-averaged F1 and micro-averaged AUC.
CITATION STYLE
Wang, S., Ren, P., Chen, Z., Ren, Z., Nie, J. Y., Ma, J., & De Rijke, M. (2020). Coding Electronic Health Records with Adversarial Reinforcement Path Generation. In SIGIR 2020 - Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 801–810). Association for Computing Machinery, Inc. https://doi.org/10.1145/3397271.3401135
Mendeley helps you to discover research relevant for your work.