Light-induced levitation of ultralight carbon aerogels via temperature control

7Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We demonstrate that ultralight carbon aerogels with skeletal densities lesser than the air density can levitate in air, based on Archimedes' principle, when heated with light. Porous materials, such as aerogels, facilitate the fabrication of materials with density less than that of air. However, their apparent density increases because of the air inside the materials, and therefore, they cannot levitate in air under normal conditions. Ultralight carbon aerogels, fabricated using carbon nanotubes, have excellent light absorption properties and can be quickly heated by a lamp owing to their small heat capacity. In this study, an ultralight carbon aerogel was heated with a halogen lamp and levitated in air by expanding the air inside as well as selectively reducing its density. We also show that the levitation of the ultralight carbon aerogel can be easily controlled by turning the lamp on and off. These findings are expected to be useful for various applications of aerogels, such as in communication and transportation through the sky.

Cite

CITATION STYLE

APA

Yanagi, R., Takemoto, R., Ono, K., & Ueno, T. (2021). Light-induced levitation of ultralight carbon aerogels via temperature control. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-91918-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free