Skip to main content

The Glowinski–Le Tallec splitting method revisited in the framework of equilibrium problems in Hilbert spaces

2Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this paper, we introduce a new approach for solving equilibrium problems in Hilbert spaces. First, we transform the equilibrium problem into the problem of finding a zero of a sum of two maximal monotone operators. Then, we solve the resulting problem using the Glowinski–Le Tallec splitting method and we obtain a linear rate of convergence depending on two parameters. In particular, we enlarge significantly the range of these parameters given rise to the convergence. We prove that the sequence generated by the new method converges to a global solution of the considered equilibrium problem. Finally, numerical tests are displayed to show the efficiency of the new approach.

Cite

CITATION STYLE

APA

Vuong, P. T., & Strodiot, J. J. (2018). The Glowinski–Le Tallec splitting method revisited in the framework of equilibrium problems in Hilbert spaces. Journal of Global Optimization, 70(2), 477–495. https://doi.org/10.1007/s10898-017-0575-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free