Large‐Scale Discovery of Gene‐Enriched SNPs

  • Gore M
  • Wright M
  • Ersoz E
  • et al.
57Citations
Citations of this article
143Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Whole‐genome association studies of complex traits in higher eukaryotes require a high density of single nucleotide polymorphism (SNP) markers at genome‐wide coverage. To design high‐throughput, multiplexed SNP genotyping assays, researchers must first discover large numbers of SNPs by extensively resequencing multiple individuals or lines. For SNP discovery approaches using short read‐lengths that next‐generation DNA sequencing technologies offer, the highly repetitive and duplicated nature of large plant genomes presents additional challenges. Here, we describe a genomic library construction procedure that facilitates pyrosequencing of genic and low‐copy regions in plant genomes, and a customized computational pipeline to analyze and assemble short reads (100–200 bp), identify allelic reference sequence comparisons, and call SNPs with a high degree of accuracy. With maize ( Zea mays L.) as the test organism in a pilot experiment, the implementation of these methods resulted in the identification of 126,683 putative SNPs between two maize inbred lines at an estimated false discovery rate (FDR) of 15.1%. We estimated rates of false SNP discovery using an internal control, and we validated these FDR rates with an external SNP dataset that was generated using locus‐specific PCR amplification and Sanger sequencing. These results show that this approach has wide applicability for efficiently and accurately detecting gene‐enriched SNPs in large, complex plant genomes.

Cite

CITATION STYLE

APA

Gore, M. A., Wright, M. H., Ersoz, E. S., Bouffard, P., Szekeres, E. S., Jarvie, T. P., … Buckler, E. S. (2009). Large‐Scale Discovery of Gene‐Enriched SNPs. The Plant Genome, 2(2). https://doi.org/10.3835/plantgenome2009.01.0002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free