We prepared the hybrid conductor of the Ag nanowire (NW) network and irregularly patterned graphene (GP) mesh with enhanced optical transmittance (~98.5%) and mechano-electric stability (ΔR/Ro: ~42.4% at 200,000 (200k) cycles) under 6.7% strain. Irregularly patterned GP meshes were prepared with a bottom-side etching method using chemical etchant (HNO3). The GP mesh pattern was judiciously and easily tuned by the regulation of treatment time (0-180 min) and concentration (0-20 M) of chemical etchants. As-formed hybrid conductor of Ag NW and GP mesh exhibit enhanced/controllable electrical-optical properties and mechano-electric stabilities; hybrid conductor exhibits enhanced optical transmittance (TT = 98.5%) and improved conductivity (ΔRs: 22%) compared with that of a conventional hybrid conductor at similar TT. It is also noteworthy that our hybrid conductor shows far superior mechano-electric stability (ΔR/Ro: ~42.4% at 200k cycles; TT: ~98.5%) to that of controls (Ag NW (ΔR/Ro: ~293% at 200k cycles), Ag NW-pristine GP hybrid (ΔR/Ro: ~121% at 200k cycles) ascribed to our unique hybrid structure.
CITATION STYLE
Sohn, H., Shin, W. H., Seok, D., Lee, T., Park, C., Oh, J. M., … Seubsai, A. (2020). Novel hybrid conductor of irregularly patterned graphene mesh and silver nanowire networks. Micromachines, 11(6), 1–13. https://doi.org/10.3390/mi11060578
Mendeley helps you to discover research relevant for your work.