Machine Learning for the Characterization of Gravitational Wave Data

0Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The low-latency characterization of detector noise is a crucial step in the detection of gravitational waves. In particular, a rapid classification and identification of transient noise sources, usually referred to as glitches, is very important when candidate signals are sent as gravitational alerts to the astronomical community. Machine learning is emerging as a promising alternative to standard methodologies used so far for the data characterization in the gravitational wave community. In particular, deep learning approach looks very promising in tackling the problem of rapid classification of noise transients in the second-generation interferometers like Advanced LIGO and Advanced Virgo. We will then discuss some possible approaches for establishing the quality of data, reducing the noise and classifying transient noise sources. We will also present some results based on simulated and real data, showing the performance of deep learning and its feasibility as a new and efficient approach to data characterization in gravitational wave interferometers. At the same time, we will show how to use machine learning techniques to search for unmodeled or unknown signals.

Cite

CITATION STYLE

APA

Cuoco, E., Iess, A., Morawski, F., & Razzano, M. (2022). Machine Learning for the Characterization of Gravitational Wave Data. In Handbook of Gravitational Wave Astronomy (pp. 1769–1791). Springer Singapore. https://doi.org/10.1007/978-981-16-4306-4_46

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free