Protection of Multi-Terminal HVDC Grids: A Comprehensive Review

13Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Multi-terminal HVDC grids facilitate the integration of various renewable resources from distant locations; in addition, they enhance the reliability and stability of the grid. Protection is one of the major obstacles in realizing reliable and secure multi-terminal HVDC grids. This paper presents a comprehensive review of the existing protection schemes for multi-terminal HVDC grids. First, DC fault current stages are demonstrated; in addition, fault analysis studies and the existing fault current calculation methods are reviewed. Then, HVDC grid protection requirements including multi-vendor interoperability conditions are extensively discussed. Furthermore, primary protection algorithms are classified into single- and double-ended schemes, and a detailed comparison between each category is presented such that the distinctive algorithms from each group are highlighted. Moreover, the recent DC reclosing schemes are reviewed highlighting their role in enhancing grid stability and ensuring supply continuity. Finally, available standards for HVDC protection systems alongside their design considerations and procedures are thoroughly outlined. This paper focuses on the recently proposed methods to design reliable protection schemes for multi-terminal HVDC grids and highlights the main advantages and disadvantages associated with them; thus, it offers a beneficial guide for researchers in the HVDC protection field.

Cite

CITATION STYLE

APA

Radwan, M., & Azad, S. P. (2022, December 1). Protection of Multi-Terminal HVDC Grids: A Comprehensive Review. Energies. MDPI. https://doi.org/10.3390/en15249552

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free