This chapter provides a detailed overview of the various Sn-based composites solders reinforced with ceramic nanoparticles. These solders are lead free in nature and are produced by various process like powder metallurgy, ball milling, casting as well as simple and economic pulse co-electrodeposition technique. In this chapter, various electrodeposited composite solders, their synthesis, characterization, and evaluation of various properties for microelectronic packaging applications, such as microstructure, microhardness, density and porosity, wear and friction, electrochemical corrosion, melting point, electrical resistivity, and residual stress of the monolithic Sn-based and (nano)composite solders have been presented and discussed. This chapter is divided into the following sections: such as introduction to microelectronic packaging, synthesis routes for solders and composites, various nanoreinforcement, and the mechanism of incorporation in solder matrix, the pulse co-electrodeposition technique, the various factors affecting composite deposition, and the improved properties of composite solders over monolithic solders for microelectronic packaging applications are also summarized here.
CITATION STYLE
Sharma, A., Das, S., & Das, K. (2016). Pulse Electrodeposition of Lead-Free Tin-Based Composites for Microelectronic Packaging. In Electrodeposition of Composite Materials. InTech. https://doi.org/10.5772/62036
Mendeley helps you to discover research relevant for your work.