The performance of SiC MOSFETs is limited by many defects at the SiC/SiO2 interface. However, there are no fully consistent atomic models of these defects or how their large densities arise. We show how the high heat of formation of SiO2 causes a selective oxidation of Si in SiC, leaving carbon clusters in SiO2. We consider chemical potentials across the interface from both the thermochemical and oxidation kinetics viewpoint. SiO2 native defects give states too far in energy from the SiC band edges, while defects in bulk SiC have too high a formation energy. Only carbon clusters have a low enough formation energy to give sufficient defect densities to account for the mobility loss, and experimental evidence for them is discussed.
CITATION STYLE
Zhang, Z., Wang, Z., Guo, Y., & Robertson, J. (2021). Carbon cluster formation and mobility degradation in 4H-SiC MOSFETs. Applied Physics Letters, 118(3). https://doi.org/10.1063/5.0037241
Mendeley helps you to discover research relevant for your work.