Water yield (WY) refers to the difference between precipitation and evapotranspiration (ET), which is vital for available terrestrial water. Climate change has led to significant changes in precipitation and evapotranspiration on a global scale, which will affect the global WY. Nevertheless, how terrestrial WY has changed during the past few decades and which factors dominated the WY changes are not fully understood. In this study, based on climate reanalysis and remote sensing data, the spatial and temporal patterns of terrestrial WY were revisited from 1981 to 2018 globally using an improved Mann-Kendall trend test method with a permutation test. The response patterns of WY to precipitation and ET are also investigated. The results show that the global multi-year mean WY is 297.4 mm/a. Based on the traditional Mann-Kendall trend test, terrestrial WY showed a significant (p < 0.05) increase of 5.72% of the total valid grid cells, while it showed a significant decrease of 7.68% of those. After correction using the calibration method, the significantly increasing and decreasing areas are reduced by 10.52% and 10.58% of them, respectively. After the correction, the confirmed increase and decrease in WY are mainly located in Africa, eastern North America and Siberia, and parts of Asia and Oceania, respectively. The dominant factor for increasing WY is precipitation, while that for decreasing WY was the combined effect of precipitation and evapotranspiration. The achievements of this study are beneficial for improving the understanding of WY in response to hydrological variables in the context of climate change.
CITATION STYLE
Gao, H., & Jin, J. (2022). Analysis of Water Yield Changes from 1981 to 2018 Using an Improved Mann-Kendall Test. Remote Sensing, 14(9). https://doi.org/10.3390/rs14092009
Mendeley helps you to discover research relevant for your work.