Memristor-type synaptic devices that can effectively emulate synaptic plasticity open up new directions for neuromorphic hardware systems. Here, a double high-k oxide structured memristor device (TaOx/HfO2) was fabricated, and its synaptic applications were characterized. Device deposition was confirmed through TEM imaging and EDS analysis. During the forming and set processes, switching of the memristor device can be divided into three types by compliance current and cycling control. Filamentary switching has strengths in terms of endurance and retention, but conductance is low. On the other hand, for interface-type switching, conductance is increased, but at the cost of endurance and retention. In order to overcome this dilemma, we proposed pseudo interface-type switching, and obtained excellent retention, decent endurance, and a variety of conductance levels that can be modulated by pulse response. The recognition rate calculated by the neural network simulation using the Fashion Modified National Institute of Standards and Technology database (MNIST) dataset, and the measured conductance values show that pseudo interface-type switching produces results that are similar to those of an interface-type device.
CITATION STYLE
Ryu, H., & Kim, S. (2020). Pseudo-interface switching of a two-terminal taox/hfo2 synaptic device for neuromorphic applications. Nanomaterials, 10(8), 1–9. https://doi.org/10.3390/nano10081550
Mendeley helps you to discover research relevant for your work.