Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology

226Citations
Citations of this article
457Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nosocomial infections pose a significant threat to patient health; however, the gold standard laboratory method for determining bacterial relatedness (pulsed-field gel electrophoresis [PFGE]) remains essentially unchanged 20 years after its introduction. Here, we explored bacterial whole-genome sequencing (WGS) as an alternative approach for molecular strain typing. We compared WGS to PFGE for investigating presumptive outbreaks involving three important pathogens: vancomycin-resistant Enterococcus faecium (n = 19), methicillin-resistant Staphylococcus aureus (n = 17), and Acinetobacter baumannii (n = 15). WGS was highly reproducible (average ≤ 0.39 differences between technical replicates), which enabled a functional, quantitative definition for determining clonality. Strain relatedness data determined by PFGE and WGS roughly correlated, but the resolution of WGS was superior (P = 5.6 × 10-8 to 0.016). Several discordant results were noted between the methods. A total of 28.9% of isolates which were indistinguishable by PFGE were nonclonal by WGS. For A. baumannii, a species known to undergo rapid horizontal gene transfer, 16.2% of isolate pairs considered nonidentical by PFGE were clonal by WGS. Sequencing whole bacterial genomes with single-nucleotide resolution demonstrates that PFGE is prone to false-positive and false-negative results and suggests the need for a new gold standard approach for molecular epidemiological strain typing.

Cite

CITATION STYLE

APA

Salipante, S. J., SenGupta, D. J., Cummings, L. A., Land, T. A., Hoogestraat, D. R., & Cookson, B. T. (2015). Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. Journal of Clinical Microbiology, 53(4), 1072–1079. https://doi.org/10.1128/JCM.03385-14

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free