Herein, we report a micro-plasma assisted solvothermal synthesis and characterization of zinc oxide nanosheets (ZnO-NSs) and their application for the removal of Cr6+ ion from aqueous solution. The morphological investigations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the high-density growth of nanosheets with the typical sizes in the range of 145.8–320.25 nm. The typical surface area of the synthesized ZnO-NSs, observed by Brunauer-Emmett-Teller (BET), was found to be 948 m2/g. The synthesized ZnO-NSs were used as efficient absorbent for the removal of Cr6+ ion from aqueous solution. Various parameters such as pH, contact time, amount of adsorbate and adsorbent on the removal efficiency of Cr6+ ion was optimized and presented in this paper. At optimized conditions, the highest value for removal was 87.1% at pH = 2 while the calculated maximum adsorption capacity was ~87.37 mg/g. The adsorption isotherm data were found to be best fitted to Temkin adsorption isotherm and the adsorption process followed the pseudo-first-order kinetics. Furthermore, the toxicity of ZnO-NSs were also examined against fibroblast cells, which show favorable results and proved that it can be used for wastewater treatment.
CITATION STYLE
Kumar, P., Saini, M., Singh, M., Chhillar, N., Dehiya, B. S., Kishor, K., … Alghamdi, A. A. (2021). Micro-plasma assisted synthesis of ZnO nanosheets for the efficient removal of Cr6+ from the aqueous solution. Crystals, 11(1), 1–16. https://doi.org/10.3390/cryst11010002
Mendeley helps you to discover research relevant for your work.