Miniaturized Parasitic Loaded High-Isolation MIMO Antenna for 5G Applications

19Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

In this paper, a multiple-input–multiple-output (MIMO) antenna is reported for 5G frequency range-2 (FR-2), 28 GHz bands. The MIMO antenna is developed in multiple iterations, including single-element design, cross-polarization reduction, and mutual coupling reduction. Initially, a single-element coplanar edge feed rectangular patch antenna is designed and the E-plane cross-polarization is reduced by −13 dB by trimming the forward corners of the patch. The ground plane is truncated to improve the −3 dB half-power-beamwidth (HPBW). A multi-wavelength spiral inspired parasitic surrounding the single element antenna is loaded, and performance analysis is performed. This parasitic element is used for self-field cancelation for the MIMO configuration. Two MIMO configurations, one with linear and the second with inverted elements, are developed and investigated. The first configuration is found to have better isolation of less than −25 dB compared to the −20 dB of the second configuration. Similarly, the gain of 4.8 dBi, the bandwidth of 3 GHz, envelope correlation coefficient (ECC) of 0.01, and diversity gain (DG) of 9.99 dB are superior to the second configuration. To validate the work, one of two MIMO configurations is fabricated and good agreement is found between simulation and measurement results.

Cite

CITATION STYLE

APA

Ravi, K. C., & Kumar, J. (2022). Miniaturized Parasitic Loaded High-Isolation MIMO Antenna for 5G Applications. Sensors, 22(19). https://doi.org/10.3390/s22197283

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free