Analysis and modelling of flood risk assessment using information diffusion and artificial neural network

18Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

Floods are a serious hazard to life and property. The traditional probability statistical method is acceptable in analysing the flood risk but requires a large sample size of hydrological data. This paper puts forward a composite method based on artificial neural network (ANN) and information diffusion method (IDM) for flood analysis. Information diffusion theory helps to extract as much useful information as possible from the sample and thus improves the accuracy of system recognition. Meanwhile, an artificial neural network model, back-propagation (BP) neural network, is used to map the multi-dimensional space of a disaster situation to a one-dimensional disaster space and to enable resolution of the grade of flood disaster loss. These techniques all contribute to a reasonable prediction of natural disaster risk. As an example, application of the method is verified in a flood risk analysis in China, and the risks of different flood grades are determined. Our model yielded very good results and suggests that the methodology is effective and practical, with the potentiality to be used to forecast flood risk for use in flood risk management. It is also hoped that by conducting such analyses lessons can be learned so that the impact of natural disasters such as floods can be mitigated in the future.

Cite

CITATION STYLE

APA

Li, Q., Jiang, X., & Liu, D. (2013). Analysis and modelling of flood risk assessment using information diffusion and artificial neural network. Water SA, 39(5), 643–648. https://doi.org/10.4314/wsa.v39i5.8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free