A mathematical model of induction motor (IM) based on the second Kirchhoff’s law with Maxwell’s equation taken into account has been developed. A mathematical model of a three-phase induction motor with a short-circuited rotor in phase axes without taking into account the saturation of the magnetic circuit and the losses in steel has been elaborated. A nonlinear model of asynchronous motor in the state space in the rotating system (d-q) of coordinates synchronized with the stator flux and a simulation model of IM in MatLab/Simulink software, with the possibility of setting angular velocity of rotation and resistance torque, have also been developed. The model-oriented design of the control program is performed on the example of digital signal processors from Texas Instruments on the LAUNCHXL-F28379D board. This description of the dynamics provides a direct insight into the physical processes in IMs. The advantage of the considered mathematical description of electromechanical energy conversion processes in three-phase IM is that it uses instantaneous values of currents and voltages of stator and rotor winding phases as variables.
CITATION STYLE
Krenicky, T., Nikitin, Y., & Božek, P. (2022). Model-Based Design of Induction Motor Control System in MATLAB. Applied Sciences (Switzerland), 12(23). https://doi.org/10.3390/app122311957
Mendeley helps you to discover research relevant for your work.