By employing a specific particle interaction theory and a high-precision equation of states for the liquid and vapor phases of H2, respectively, a new H2 solubility model in pure water and aqueous NaCl solutions is proposed in this study. The model established by fitting the experimental data of H2 solubility can be used to estimate H2 solubility in pure water at temperatures and pressures of 273.15–423.15 K and 0–1100 bar, respectively, and in salt solutions (NaCl concentration = 0–5 mol/kg) at temperatures and pressures of 273.15–373.15 K and 0–230 bar, respectively. By adopting the theory of liquid electrolyte solutions, the model can also be used to predict H2 solubility in seawater without fitting the experimental data of a seawater system. Within or close to experimental data uncertainty, the mean absolute percentage error between the model-predicted and experimentally obtained H2 solubilities was less than 1.14%.
CITATION STYLE
Zhu, Z., Cao, Y., Zheng, Z., & Chen, D. (2022). An Accurate Model for Estimating H2 Solubility in Pure Water and Aqueous NaCl Solutions. Energies, 15(14). https://doi.org/10.3390/en15145021
Mendeley helps you to discover research relevant for your work.