MOFSRank: A Multiobjective Evolutionary Algorithm for Feature Selection in Learning to Rank

9Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Learning to rank has attracted increasing interest in the past decade, due to its wide applications in the areas like document retrieval and collaborative filtering. Feature selection for learning to rank is to select a small number of features from the original large set of features which can ensure a high ranking accuracy, since in many real ranking applications many features are redundant or even irrelevant. To this end, in this paper, a multiobjective evolutionary algorithm, termed MOFSRank, is proposed for feature selection in learning to rank which consists of three components. First, an instance selection strategy is suggested to choose the informative instances from the ranking training set, by which the redundant data is removed and the training efficiency is enhanced. Then on the selected instance subsets, a multiobjective feature selection algorithm with an adaptive mutation is developed, where good feature subsets are obtained by selecting the features with high ranking accuracy and low redundancy. Finally, an ensemble strategy is also designed in MOFSRank, which utilizes these obtained feature subsets to produce a set of better features. Experimental results on benchmark data sets confirm the advantage of the proposed method in comparison with the state-of-the-arts.

Cite

CITATION STYLE

APA

Cheng, F., Guo, W., & Zhang, X. (2018). MOFSRank: A Multiobjective Evolutionary Algorithm for Feature Selection in Learning to Rank. Complexity, 2018. https://doi.org/10.1155/2018/7837696

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free