Formation of giant iron oxide-copper-gold deposits by superimposed episodic hydrothermal pulses

6Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Iron oxide-copper-gold (IOCG) deposits are a globally important source of copper, gold and critical commodities. Despite their relevance, IOCG deposits remain an ill-defined clan, with a range of characteristics that has complicated development of the general genetic model. Here we focus on the Candelaria IOCG deposit in Chile and reveal that by using micro-textural and compositional variations in actinolite, a common alteration mineral found in many IOCG deposits, we can constrain the evolution of these systems. We demonstrate that Candelaria formed by the superposition of at least two pulses of mineralization with a late Cu-rich event overprinting and superimposed over an early, and probably higher temperature, iron oxide-apatite (IOA) mineralization event. These distinct pulses were likely caused by episodic injections of magmatic-hydrothermal fluids from crystallizing magmas at depth. Our data provide empirical evidence of grain-to-deposit scale compositional and potentially temperature changes in an IOCG system. The results support the use of actinolite chemistry as a novel approach to understand the formation of IOCG deposits and a potential tool for vectoring in exploration.

Cite

CITATION STYLE

APA

del Real, I., Reich, M., Simon, A. C., Deditius, A., Barra, F., Rodríguez-Mustafa, M. A., … Roberts, M. P. (2023). Formation of giant iron oxide-copper-gold deposits by superimposed episodic hydrothermal pulses. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-37713-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free