A new formal model of belief dynamics is proposed, in which the epistemic agent has both probabilistic beliefs and full beliefs. The agent has full belief in a proposition if and only if she considers the probability that it is false to be so close to zero that she chooses to disregard that probability. She treats such a proposition as having the probability 1, but, importantly, she is still willing and able to revise that probability assignment if she receives information that gives her sufficient reasons to do so. Such a proposition is (presently) undoubted, but not undoubtable (incorrigible). In the formal model it is assigned a probability 1 − δ, where δ is an infinitesimal number. The proposed model employs probabilistic belief states that contain several underlying probability functions representing alternative probabilistic states of the world. Furthermore, a distinction is made between update and revision, in the same way as in the literature on (dichotomous) belief change. The formal properties of the model are investigated, including properties relevant for learning from experience. The set of propositions whose probabilities are infinitesimally close to 1 forms a (logically closed) belief set. Operations that change the probabilistic belief state give rise to changes in this belief set, which have much in common with traditional operations of belief change.
CITATION STYLE
Hansson, S. O. (2020). Revising Probabilities and Full Beliefs. Journal of Philosophical Logic, 49(5), 1005–1039. https://doi.org/10.1007/s10992-020-09545-w
Mendeley helps you to discover research relevant for your work.