The influence of chimeric antigen receptor structural domains on clinical outcomes and associated toxicities

18Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

Abstract

Chimeric antigen receptor (CAR)-T cell therapy has transformed the treatment of B cell ma-lignancies, improving patient survival and long-term remission. Nonetheless, over 50% of patients experience severe treatment-related toxicities including cytokine release syndrome (CRS) and neuro-toxicity. Differences in severity of toxic side-effects among anti-CD19 CARs suggest that the choice of costimulatory domain makes a significant contribution to toxicity, but comparisons are complicated by additional differences in the hinge and transmembrane (TM) domains of the most commonly used CARs in the clinic, segments that have long been considered to perform purely structural roles. In this perspective, we examine clinical and preclinical data for anti-CD19 CARs with identical antigen-binding (FMC63) and signalling (CD3ζ) domains to unravel the contributions of different hinge-TM and costimulatory domains. Analysis of clinical trials highlights an association of the CD28 hinge-TM with higher incidence of CRS and neurotoxicity than the corresponding sequences from CD8, regardless of whether the CD28 or the 4-1BB costimulatory domain is used. The few preclinical studies that have systematically varied these domains similarly support a strong and independent role for the CD28 hinge-TM sequence in high cytokine production. These observations highlight the value that a comprehensive and systematic interrogation of each of these structural domains could provide toward developing fundamental principles for rational design of safer CAR-T cell therapies.

Cite

CITATION STYLE

APA

Davey, A. S., Call, M. E., & Call, M. J. (2021). The influence of chimeric antigen receptor structural domains on clinical outcomes and associated toxicities. Cancers, 13(1), 1–16. https://doi.org/10.3390/cancers13010038

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free