Techno-economic evaluation of 2 nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process

222Citations
Citations of this article
425Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves), i.e. second generation (2G) bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G), as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H 3PO 4as catalyst and separately hydrolysed and fermented. Results: The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions: According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies) with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the opportunity cost from the sale of excess electricity and if the cost of enzymes continues to fall. © 2012 Macrelli et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

MacRelli, S., Mogensen, J., & Zacchi, G. (2012). Techno-economic evaluation of 2 nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnology for Biofuels, 5. https://doi.org/10.1186/1754-6834-5-22

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free