Blood platelets are a typical instance of perishable age-differentiated products with a shelf life of five days (on average), which may lead to significant wastage of some collected samples. At the same time, a shortage of platelets may also be observed because of emergency demands and the limited number of donors, especially during disasters such as wars and the COVID-19 pandemic. Therefore, developing an efficient blood platelet supply chain management model is highly necessary to reduce shortage and wastage. In this research, an integrated resilient–sustainable supply chain network of perishable age-differentiated platelets considering vertical and horizontal transshipment is designed. In order to achieve sustainability, economic cost, social cost (shortage), and environmental cost (wastage) are taken into account. A reactive resilient strategy utilizing lateral transshipment between hospitals is adopted to make the blood platelet supply chain powerful against shortage and disruption risks. The presented model is solved using a metaheuristic based on a local search-empowered grey wolf optimizer. The obtained results demonstrate the efficiency of the proposed vertical–horizontal transshipment model in reducing total economic cost, shortage, and wastage by 3.61%, 30.1%, and 18.8%, respectively.
CITATION STYLE
Shokouhifar, M., & Goli, A. (2023). Designing a Resilient–Sustainable Supply Chain Network of Age-Differentiated Blood Platelets Using Vertical–Horizontal Transshipment and Grey Wolf Optimizer. International Journal of Environmental Research and Public Health, 20(5). https://doi.org/10.3390/ijerph20054078
Mendeley helps you to discover research relevant for your work.