Biological mediators secreted during peripheral chronic inflammation reach the bloodstream and may damage the blood–brain barrier (BBB), triggering central nervous system (CNS) disorders. Full-fledged human BBB models are efficient tools to investigate pharmacological pathways and mechanisms of injury at the BBB. We here employed a human in vitro BBB model to investigate the effects of either plasma from inflammatory bowel disease (IBD) patients or tumor necrosis factor α (TNFα), a cytokine commonly released in periphery during IBD, and the anti-inflammatory role of pioglitazone, a peroxisome proliferator-activated receptor γ agonist (PPARγ). The BBB model was treated with either 10% plasma from healthy and IBD donors or 5 ng/mL TNFα, following treatment with 10 µM pioglitazone. Patient plasma did not alter BBB parameters, but TNFα levels in plasma from all donors were associated with varying expression of claudin-5, claudin-3 and ICAM-1. TNFα treatment increased BBB permeability, claudin-5 disarrangement, VCAM-1 and ICAM-1 expression, MCP1 secretion and monocyte transmigration. These effects were attenuated by pioglitazone. Plasma from IBD patients, which evoked higher BBB permeability, also increased ICAM-1 expression, this effect being reversed by pioglitazone. Our findings evidence how pioglitazone controls periphery-elicited BBB inflammation and supports its repurposing for prevention/treating of such inflammatory conditions.
CITATION STYLE
da Rocha, G. H. O., Loiola, R. A., de Paula-Silva, M., Shimizu, F., Kanda, T., Vieira, A., … Farsky, S. H. P. (2022). Pioglitazone Attenuates the Effects of Peripheral Inflammation in a Human In Vitro Blood–Brain Barrier Model. International Journal of Molecular Sciences, 23(21). https://doi.org/10.3390/ijms232112781
Mendeley helps you to discover research relevant for your work.