Green Synthesis of ZnO-GO Composites for the Photocatalytic Degradation of Methylene Blue

47Citations
Citations of this article
109Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Beneficial from the excellent optical performance of zinc oxide (ZnO) nanocrystals and the absorption properties of graphene oxide (GO), the nanocomposites of ZnO and GO with synergistic photocatalytic effects were prepared by a precipitation method, in which GO is utilized as the catalyst carrier. The prepared composites were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy and also performed photocatalytic activity for the nanocomposites. The results show that ZnO is uniformly loaded on the surface of GO assisted by an effective interface coupling. Due to interface coupling between ZnO and GO, electrons can be directly transferred from the valence band of ZnO to GO. The photodegradation efficiency of the composites reaches to 97.6%, and the first-order reaction rate constant of photodegradation is calculated to be 0.04401 min-1. The novel ZnO-GO composites with excellent photocatalytic performance display promising potential applications in the field of photocatalysis and will provide a new platform for building next-generation graphene-based semiconductor composites.

Cite

CITATION STYLE

APA

Lin, Y., Hong, R., Chen, H., Zhang, D., & Xu, J. (2020). Green Synthesis of ZnO-GO Composites for the Photocatalytic Degradation of Methylene Blue. Journal of Nanomaterials, 2020. https://doi.org/10.1155/2020/4147357

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free