On the “Cal-Mode” Correction to TOPEX Satellite Altimetry and Its Effect on the Global Mean Sea Level Time Series

75Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Comparison of satellite altimetry against a high-quality network of tide gauges suggests that sea-surface heights from the TOPEX altimeter may be biased by ±5 mm, in an approximate piecewise linear, or U-shaped, drift. This has been previously reported in at least two other studies. The bias is probably caused by use of an internal calibration-mode range correction, included in the TOPEX “net instrument” correction, which is suspect owing to changes in the altimeter's point target response. Removal of this correction appears to mitigate most of the drift problem. In addition, a new time series based on retracking the TOPEX waveforms, again without the calibration-mode correction, also reduces the drift aside for a clear problem during the first 2 years. With revision, the TOPEX measurements, combined with successor Jason altimeter measurements, show global mean sea level rising fairly steadily throughout most of 24 year time period, with rates around 3 mm/yr, although higher over the last few years.

Cite

CITATION STYLE

APA

Beckley, B. D., Callahan, P. S., Hancock, D. W., Mitchum, G. T., & Ray, R. D. (2017). On the “Cal-Mode” Correction to TOPEX Satellite Altimetry and Its Effect on the Global Mean Sea Level Time Series. Journal of Geophysical Research: Oceans, 122(11), 8371–8384. https://doi.org/10.1002/2017JC013090

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free