The three-phase three-wire neutral-point-clamped shunt active power filter (NPC-SAPF), which most adopts classical closed-loop feedback control methods such as proportional-integral (PI), proportional-resonant (PR) and repetitive control, can only output 1st-25th harmonic currents with 10-20 kHz switching frequency. The reason for this is that the controller design must make a compromise between system stability and harmonic current compensation ability under the condition of less than 20 kHz switching frequency. To broaden the bandwidth of the compensation current, a Lyapunov stability theory-based control strategy is presented in this paper for NPC-SAPF. The proposed control law is obtained by constructing the switching function on the basis of the mathematical model and the Lyapunov candidate function, which can avoid introducing closed-loop feedback control and keep the system globally asymptotically stable. By means of the proposed method, the NPC-SAPF has compensation ability for the 1st-50th harmonic currents, the total harmonic distortion (THD) and each harmonic content of grid currents satisfy the requirements of IEEE Standard 519-2014. In order to verify the superiority of the proposed control strategy, stability conditions of the proposed strategy and the representative PR controllers are compared. The simulation results in MATLAB/Simulink (MathWorks, Natick, MA, USA) and the experimental results obtained on a 6.6 kVA NPC-SAPF laboratory prototype validate the proposed control strategy.
CITATION STYLE
Cao, Y., Xu, Y., Li, Y., Yu, J., & Yu, J. (2017). A lyapunov stability theory-based control strategy for three-level shunt active power filter. Energies, 10(1). https://doi.org/10.3390/en10010112
Mendeley helps you to discover research relevant for your work.