Lyman Continuum Galaxy Candidates in COSMOS

  • Prichard L
  • Rafelski M
  • Cooke J
  • et al.
8Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Star-forming galaxies are the sources likely to have reionized the universe. As we cannot observe them directly due to the opacity of the intergalactic medium at z ≳ 5, we study z ∼ 3–5 galaxies as proxies to place observational constraints on cosmic reionization. Using new deep Hubble Space Telescope rest-frame UV F336W and F435W imaging (30 orbits, ∼40 arcmin 2 , ∼29–30 mag depth at 5 σ ), we attempt to identify a sample of Lyman continuum galaxies (LCGs). These are individual sources that emit ionizing flux below the Lyman break (<912 Å). This population would allow us to constrain cosmic reionization parameters such as the number density and escape fraction ( f esc ) of ionizing sources. We compile a comprehensive parent sample that does not rely on the Lyman-break technique for redshifts. We present three new spectroscopic candidates at z ∼ 3.7–4.4 and 32 new photometric candidates. The high-resolution multiband HST imaging and new Keck/Low Resolution Imaging Spectrometer (LRIS) redshifts make these promising spectroscopic LCG candidates. Using both a traditional and a probabilistic approach, we find that the most likely f esc values for the three spectroscopic LCG candidates are >100% and therefore not physical. We are unable to confirm the true nature of these sources with the best available imaging and direct blue Keck/LRIS spectroscopy. More spectra, especially from the new class of 30 m telescopes, will be required to build a statistical sample of LCGs to place firm observational constraints on cosmic reionization.

Cite

CITATION STYLE

APA

Prichard, L. J., Rafelski, M., Cooke, J., Meštrić, U., Bassett, R., Ryan-Weber, E. V., … Spitler, L. (2022). Lyman Continuum Galaxy Candidates in COSMOS. The Astrophysical Journal, 924(1), 14. https://doi.org/10.3847/1538-4357/ac3004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free