Transcriptome Analysis of Roots from Wheat (Triticum aestivum L.) Varieties in Response to Drought Stress

7Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Under climate change, drought is one of the most limiting factors that influences wheat (Triticum aestivum L.) production. Exploring stress-related genes is vital for wheat breeding. To identify genes related to the drought tolerance response, two common wheat cultivars, Zhengmai 366 (ZM366) and Chuanmai 42 (CM42), were selected based on their obvious difference in root length under 15% PEG-6000 treatment. The root length of the ZM366 cultivar was significantly longer than that of CM42. Stress-related genes were identified by RNA-seq in samples treated with 15% PEG-6000 for 7 days. In total, 11,083 differentially expressed genes (DEGs) and numerous single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) were identified. GO enrichment analysis revealed that the upregulated genes were mainly related to the response to water, acidic chemicals, oxygen-containing compounds, inorganic substances, and abiotic stimuli. Among the DEGs, the expression levels of 16 genes in ZM366 were higher than those in CM42 after the 15% PEG-6000 treatment based on RT-qPCR. Furthermore, EMS-induced mutants in Kronos (T. turgidum L.) of 4 representative DEGs possessed longer roots than the WT after the 15% PEG-6000 treatment. Altogether, the drought stress genes identified in this study represent useful gene resources for wheat breeding.

Cite

CITATION STYLE

APA

Xi, W., Hao, C., Li, T., Wang, H., & Zhang, X. (2023). Transcriptome Analysis of Roots from Wheat (Triticum aestivum L.) Varieties in Response to Drought Stress. International Journal of Molecular Sciences, 24(8). https://doi.org/10.3390/ijms24087245

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free