Tumor otak merupakan penyakit dimana jaringan dalam sistem saraf pusat tumbuh secara abnormal. Pertumbuhan tumor tersebut mengalami interaksi dengan sistem imun untuk menghambat pertumbuhan tumor, hal tersebut dapat dideskripsikan dalam model matematika yang berbentuk persamaan diferensial biasa. Model matematika penyebaran tumor otak dengan respon sistem imun pada penelitian ini terdapat lima variabel yaitu, glioma , makrofag , sel T CD TGF- , dan IFN- . Model tersebut akan didiskritisasi dengan menggunakan metode beda hingga standar. Metode beda hingga standar atau metode euler merupakan metode yang diturunkan dari deret Taylor. Berdasarkan hasil analisis diketahui bahwa model diskrit penyebaran tumor otak dengan respon sistem imun memiliki jenis kestabilan model diskrit sama dengan model kontinunya dan memiliki dua titik kesetimbangan, yaitu kesetimbangan bebas penyakit dan kesetimbangan endemik. Titik kesetimbangan bebas penyakit dan endemik bersifat stabil asimtotik apabila memenuhi kriteria kestabilan Schur-Cohn. Simulasi numerik dilakukan untuk mengilustrasikan dan menguji hasil analisis yang diperoleh. Hasil simulasi numerik diperoleh bahwa model diskrit akan sama dengan model kontinunya saat tertentu.
CITATION STYLE
Roza, I. Z. N., Pagalay, U., & Widayani, H. (2021). Simulasi Model Diskrit Respon Sistem Imun pada Penyebaran Tumor Otak dengan Metode Beda Hingga Standar. Jurnal Riset Mahasiswa Matematika, 1(2), 79–92. https://doi.org/10.18860/jrmm.v1i2.14045
Mendeley helps you to discover research relevant for your work.