This study was performed to examine the role of superoxide (O2-) in the development of salt sensitivity and hypertension induced by inhibition of nitric oxide (NO) generation. Male Sprague-Dawley rats were fed with diet containing either normal salt (NS) (0.4% NaCl) or high salt (HS) (4% NaCl). These rats were treated with or without an NO synthase inhibitor, nitro-L-arginine methylester (L-NAME) (15 mg/kg/d) and O2- scavenger, tempol (30 mg/kg per day) in the drinking water for 4 weeks. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography and urine collection was performed during the course of experimental periods. At the end of 4 weeks, L-NAME treatment resulted in greater increases in SBP in HS rats (127+/-2 to 172+/-3 mm Hg; n=8) than in NS rats (130+/-2 to 156+/-2 mm Hg; n=9). Co-administration of tempol with L-NAME markedly attenuated these SBP responses to a similar level in both HS (128+/-3 to 147+/-2 mm Hg; n=8) and NS rats (126+/-2 to 142+/-3 mm Hg; n=8). Urinary 8-isoprostane excretion (UIsoV) increased in response to L-NAME treatment that was higher in HS (10.6+/-0.5 to 21.5+/-0.8 ng/d) than in NS rats (10.8+/-0.7 to 16.9+/-0.6 ng/d). Co-treatment with tempol completely abolished these UIsoV responses to L-NAME in both HS and NS rats but did not alter urinary H2O2 excretion rate. The decreases in urinary nitrate/nitrite excretion in response to L-NAME treatment were not altered by co-administration of tempol in both HS and NS rats. These data suggest that enhancement of O2- activity during NO inhibition contributes to the development of salt sensitivity that is associated with NO-deficient hypertension.
CITATION STYLE
Kopkan, L., & Majid, D. S. A. (2005). Superoxide contributes to development of salt sensitivity and hypertension induced by nitric oxide deficiency. Hypertension, 46(4), 1026–1031. https://doi.org/10.1161/01.HYP.0000174989.39003.58
Mendeley helps you to discover research relevant for your work.