Lower extremity fatigue increases complexity of postural control during a single-legged stance

23Citations
Citations of this article
83Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Non-linear approaches to assessment of postural control can provide insight that compliment linear approaches. Control entropy (CE) is a recently developed statistical tool from non-linear dynamical systems used to assess the complexity of non-stationary signals. We have previously used CE of high resolution accelerometry in running to show decreased complexity with exhaustive exercise. The purpose of this study was to determine if complexity of postural control decreases following fatiguing exercise using CE. Methods. Ten subjects (5 M/5 F; 25 ± 3 yr; 169.4 ± 11.7 cm; 79.0 ± 16.9 kg) consented to participation approved by Western Oregon University IRB and completed two trials separated by 2-7 days. Trials consisted of two single-legged balance tests separated by two Wingate anaerobic tests (WAnT; PreFat/PostFat), or rest period (PreRest/PostRest). Balance tests consisted of a series of five single-legged stances, separated by 30 s rest, performed while standing on the dominant leg for 15-s with the participant crossing the arms over the chest and flexing the non-dominant knee to 90 degrees. High resolution accelerometers (HRA) were fixed superficial to L3/L4 at the approximate center of mass (COM). Triaxial signals from the HRA were streamed in real time at 625 Hz. COM accelerations were recorded in g's for vertical (VT), medial/lateral (ML), and anterior/posterior (AP) axes. A newly developed statistic (R-test) was applied to group response shapes generated by Karhunen Loeve (KL) transform modes resulting from Control Entropy (CE) analysis. Results: R-tests showed a significant mean vector difference (p

Cite

CITATION STYLE

APA

McGregor, S. J., Armstrong, W. J., Yaggie, J. A., Bollt, E. M., Parshad, R., Bailey, J. J., … Kelly, S. R. (2011). Lower extremity fatigue increases complexity of postural control during a single-legged stance. Journal of NeuroEngineering and Rehabilitation, 8(1). https://doi.org/10.1186/1743-0003-8-43

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free