This thesis addressed questions about the Fe cycle by measuring detailed profiles and transects of Fe species in the ocean and also by exploring the use of a new tracer of Fe, Fe isotopic fractionation. In the subtropical and tropical Atlantic Ocean, transects and profiles are presented for dissolved Fe (less than]0.4 m), soluble Fe (less than]0.02 gm), and colloidal Fe (0.02 to 0.4 Im). Surface dissolved Fe distributions reflect atmospheric deposition trends with colloidal Fe following dust deposition more strongly than the soluble fraction of Fe. Observed surface maxima and shallow minima in dissolved Fe were always due to variations in the colloidal Fe fraction. Deep-water dissolved and colloidal Fe concentrations vary with water mass source, age, and transport path. Elevated dissolved Fe concentrations (greather than]1 nmol/kg) were associated with an oxygen minimum zone in the tropical Atlantic at 100N, 45 degrees W. Fractionation of iron isotopes could be an effective tool to investigate the geochemistry of iron. Trace metal clean plankton tows, river samples, aerosol leachates, and porewater samples were measured for their iron isotopic composition using a GV Instruments IsoProbe Multi-collector ICPMS. The Fe isotopic composition of plankton tow samples varied by over 4%o (in 56Fe/54Fe). North Pacific plankton tow samples had isotopically lighter Fe isotopic compositions than samples from the Atlantic. The overall isotopic range observed in the Amazon River system was 1.5%o, with variability observed for different types of tributaries.
CITATION STYLE
Bergquist, B. A. (2004). The marine geochemistry of iron and iron isotopes. The marine geochemistry of iron and iron isotopes. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution. https://doi.org/10.1575/1912/1854
Mendeley helps you to discover research relevant for your work.